Part Number Hot Search : 
R0100 IR3551 MC12040 IR3551 ARB50H 140CF5 2520E 1N483B
Product Description
Full Text Search
 

To Download VN920-B5 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? may 2003 1/23 undervoltage overtemperature v cc gnd input output overvoltage current limiter logic driver power clamp v cc clamp v ds limiter detection detection detection k i out current sense vn920 / VN920-B5 / vn920so single channel high side solid state relay n cmos compatible input n proportional load current sense n shorted load protection n undervoltage and overvoltage shutdown n overvoltage clamp n thermal shutdown n current limitation n protection against loss of ground and loss of v cc n very low stand-by power dissipation n reverse battery protection (*) description the vn920, VN920-B5, vn920so is a monolithic device made by using stmicroelectronics vipower m0-3 technology, intended for driving any kind of load with one side connected to ground. active v cc pin voltage clamp protects the device against low energy spikes (see iso7637 transient compatibility table). active current limitation combined with thermal shutdown and automatic restart protect the device against overload. the device integrates an analog current sense output which delivers a current proportional to the load current. device automatically turns off in case of ground pin disconnection. type r ds(on) i out v cc vn920 VN920-B5 vn920so 16m w 30 a 36 v pentawatt p 2 pak so-16l order codes package tube t&r pentawatt vn920 - p 2 pak VN920-B5 VN920-B513tr so-16l vn920so vn920so13tr block diagram (*) see application schematic at page 8
2/23 vn920 / VN920-B5 / vn920so absolute maximum rating connection diagram (top view) current and voltage conventions symbol parameter value unit pentawatt p 2 pak so-16l v cc dc supply voltage 41 v - v cc reverse dc supply voltage - 0.3 v - i gnd dc reverse ground pin current - 200 ma i out dc output current internally limited a - i out reverse dc output current - 21 a i in dc input current +/- 10 ma v csense current sense maximum voltage -3 +15 v v v esd electrostatic discharge (human body model: r=1.5k w ; c=100pf) - input - current sense - output - v cc 4000 2000 5000 5000 v v v v e max maximum switching energy (l=0.25mh; r l =0 w ; v bat =13.5v; t jstart =150oc; i l =45a) 364 352 mj p tot power dissipation t c 25c 96.1 96.1 8.3 w t j junction operating temperature internally limited c t c case operating temperature - 40 to 150 c t stg storage temperature - 55 to 150 c 1 5 4 3 2 1 v cc gnd input c sense output pentawatt 3 2 1 4 5 v cc gnd input c sense output p 2 pak i s i gnd v cc v cc v sense output i out current sense i sense input i in v in v out gnd v cc output output output output v cc output output v cc n.c. n.c. c sense input v cc gnd n.c. 1 8 9 16 so-16l
3/23 vn920 / VN920-B5 / vn920so thermal data (*) when mounted on a standard single-sided fr-4 board with 0.5cm 2 of cu (at least 35 m m thick). (**) when mounted on a standard single-sided fr-4 board with 0.5cm 2 of cu (at least 35 m m thick) connected to all v cc pins. electrical characteristics (8v 4/23 vn920 / VN920-B5 / vn920so 1 electrical characteristics (continued) current sense (9v v cc 16v) (see fig. 1) protections note 2: current sense signal delay after positive input slope note: sense pin doesnt have to be left floating. symbol parameter test conditions min typ max unit k 1 i out /i sense i out =1a; v sense =0.5v; t j = -40c...150c 3300 4400 6000 dk 1 /k 1 current sense ratio drift i out =1a; v sense =0.5v; t j = -40c...+150c -10 +10 % k 2 i out /i sense i out =10a; v sense =4v; t j =-40c t j =25c...150c 4200 4400 4900 4900 6000 5750 dk 2 /k 2 current sense ratio drift i out =10a; v sense =4v; t j =-40c...+150c -8 +8 % k 3 i out /i sense i out =30a; v sense =4v; t j =-40c t j =25c...150c 4200 4400 4900 4900 5500 5250 dk 3 /k 3 current sense ratio drift i out =30a; v sense =4v; t j =-40c...+150c -6 +6 % i senseo analog sense leakage current v cc =6...16v; i out =0a;v sense =0v; t j =-40c...+150c 010 m a v sense max analog sense output voltage v cc =5.5v; i out =5a; r sense =10k w v cc >8v; i out =10a; r sense =10k w 2 4 v v v senseh sense voltage in overtemperature conditions v cc =13v; r sense =3.9k w 5.5 v r vsenseh analog sense output impedance in overtemperature condition v cc =13v; t j >t tsd ; output open 400 w t dsense current sense delay response to 90% i sense (see note 2) 500 m s symbol parameter test conditions min typ max unit t tsd shut-down temperature 150 175 200 c t r reset temperature 135 c t hyst thermal hysteresis 7 15 c i lim dc short circuit current v cc =13v 5v 5/23 vn920 / VN920-B5 / vn920so 1 1 figure 2: switching characteristics (resistive load r l =1.3 w ) 02468101214161820222426283032 3000 3500 4000 4500 5000 5500 6000 6500 min.tj=-40c max.tj=-40c min.tj=25...150c max.tj=25...150c typical value figure 1: i out /i sense versus i out i out (a) i out /i sense v out dv out /dt (on) t r 80% 10% t f dv out /dt (off) i sense t t 90% t d(off) input t 90% t d(on) t dsense
6/23 vn920 / VN920-B5 / vn920so 1 truth table electrical transient requirements conditions input output sense normal operation l h l h 0 nominal overtemperature l h l l 0 v senseh undervoltage l h l l 0 0 overvoltage l h l l 0 0 short circuit to gnd l h h l l l 0 (t j t tsd ) v senseh short circuit to v cc l h h h 0 < nominal negative output voltage clamp l l 0 iso t/r 7637/1 test pulse test levels i ii iii iv delays and impedance 1 -25 v -50 v -75 v -100 v 2 ms 10 w 2 +25 v +50 v +75 v +100 v 0.2 ms 10 w 3a -25 v -50 v -100 v -150 v 0.1 m s 50 w 3b +25 v +50 v +75 v +100 v 0.1 m s 50 w 4 -4 v -5 v -6 v -7 v 100 ms, 0.01 w 5 +26.5 v +46.5 v +66.5 v +86.5 v 400 ms, 2 w iso t/r 7637/1 test pulse test levels results i ii iii iv 1cccc 2cccc 3acccc 3bcccc 4cccc 5ceee class contents c all functions of the device are performed as designed after exposure to disturbance. e one or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.
7/23 vn920 / VN920-B5 / vn920so sense input normal operation undervoltage v cc v usd v usdhyst input overvoltage v cc sense input sense figure 3: waveforms load current load current load current overtemperature input sense t tsd t r t j load current v ov v ovhyst v cc > v usd short to ground input load current sense load voltage input load voltage sense load current 8/23 vn920 / VN920-B5 / vn920so gnd protection network against reverse battery solution 1: resistor in the ground line (r gnd only). this can be used with any type of load. the following is an indication on how to dimension the r gnd resistor. 1) r gnd 600mv / (i s(on)max ). 2) r gnd 3 (- v cc ) / (-i gnd ) where -i gnd is the dc reverse ground pin current and can be found in the absolute maximum rating section of the devices datasheet. power dissipation in r gnd (when v cc <0: during reverse battery situations) is: p d = (-v cc ) 2 /r gnd this resistor can be shared amongst several different hsd. please note that the value of this resistor should be calculated with formula (1) where i s(on)max becomes the sum of the maximum on-state currents of the different devices. please note that if the microprocessor ground is not common with the device ground then the r gnd will produce a shift (i s(on)max * r gnd ) in the input thresholds and the status output values. this shift will vary depending on how many devices are on in the case of several high side drivers sharing the same r gnd . if the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the st suggests to utilize solution 2 (see below). solution 2: a diode (d gnd ) in the ground line. a resistor (r gnd =1k w) should be inserted in parallel to d gnd if the device will be driving an inductive load. this small signal diode can be safely shared amongst several different hsd. also in this case, the presence of the ground network will produce a shift ( j 600mv) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. this shift will not vary if more than one hsd shares the same diode/resistor network. load dump protection d ld is necessary (voltage transient suppressor) if the load dump peak voltage exceeds v cc max dc rating. the same applies if the device will be subject to transients on the v cc line that are greater than the ones shown in the iso t/r 7637/1 table. m c i/os protection: if a ground protection network is used and negative transients are present on the v cc line, the control pins will be pulled negative. st suggests to insert a resistor (r prot ) in line to prevent the m c i/os pins to latch-up. the value of these resistors is a compromise between the leakage current of m c and the current required by the hsd i/os (input levels compatibility) with the latch-up limit of m c i/os. -v ccpeak /i latchup r prot (v oh m c -v ih -v gnd ) / i ihmax calculation example: for v ccpeak = - 100v and i latchup 3 20ma; v oh m c 3 4.5v 5k w r prot 65k w . recommended r prot value is 10k w. 1 application schematic v cc gnd output d gnd r gnd d ld m c +5v r prot v gnd input current sense r sense r prot
9/23 vn920 / VN920-B5 / vn920so 1 1 1 high level input current input clamp voltage off state output current -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 iih (ua) vin=3.25v -50 -25 0 25 50 75 100 125 150 175 tc (c) 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 vicl (v) iin=1ma input high level -50 -25 0 25 50 75 100 125 150 175 tc (c) 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 vih (v) input hysteresis voltage input low level -50 -25 0 25 50 75 100 125 150 175 tc (c) 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 vil (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 vhyst (v) -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 1 2 3 4 5 6 7 8 9 il(off1) (ua)
10/23 vn920 / VN920-B5 / vn920so 1 overvoltage shutdown turn-on voltage slope turn-off voltage slope i lim vs t case -50 -25 0 25 50 75 100 125 150 175 tc (c) 30 32 34 36 38 40 42 44 46 48 50 vov (v) -50 -25 0 25 50 75 100 125 150 175 tc (oc) 250 300 350 400 450 500 550 600 650 700 dvout/dt(on) (v/ms) vcc=13v rl=1.3ohm -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 50 100 150 200 250 300 350 400 450 500 550 dvout/dt(off) (v/ms) vcc=13v rl=1.3ohm on state resistance vs t case on state resistance vs v cc -50 -25 0 25 50 75 100 125 150 175 tc (c) 0 10 20 30 40 50 60 70 80 90 100 ilim (a) vcc=13v -50 -25 0 25 50 75 100 125 150 175 tc (oc) 0 5 10 15 20 25 30 35 40 45 50 ron (mohm) iout=10a vcc=8v; 36v 5 10152025303540 vcc (v) 0 5 10 15 20 25 30 35 40 45 50 ron (mohm) tc= - 40oc tc= 25oc tc= 150oc
11/23 vn920 / VN920-B5 / vn920so so-16l maximum turn off current versus load inductance a = single pulse at t jstart =150oc b= repetitive pulse at t jstart =100oc c= repetitive pulse at t jstart =125oc conditions: v cc =13.5v values are generated with r l =0 w in case of repetitive pulses, t jstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves b and c. v in , i l t demagnetization demagnetization demagnetization 1 10 100 0.01 0.1 1 10 100 l(mh) i lmax (a) a b c
12/23 vn920 / VN920-B5 / vn920so p 2 pak maximum turn off current versus load inductance a = single pulse at t jstart =150oc b= repetitive pulse at t jstart =100oc c= repetitive pulse at t jstart =125oc conditions: v cc =13.5v values are generated with r l =0 w in case of repetitive pulses, t jstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves b and c. v in , i l t demagnetization demagnetization demagnetization 1 10 100 0.01 0.1 1 10 100 l(mh) i lmax (a) a b c
13/23 vn920 / VN920-B5 / vn920so p 2 pak pc board r thj-amb vs pcb copper area in open box free air condition p 2 pak thermal data layout condition of r th and z th measurements (pcb fr4 area= 60mm x 60mm, pcb thickness=2mm, cu thickness=35 m m, copper areas: 0.97cm 2 , 8cm 2 ). 30 35 40 45 50 55 0246810 pcb cu heatsink area (cm^2) rthj_amb (c/w) tj-tamb=50c
14/23 vn920 / VN920-B5 / vn920so 1 so-16l pc board r thj-amb vs pcb copper area in open box free air condition so-16l thermal data layout condition of r th and z th measurements (pcb fr4 area= 41mm x 48mm, pcb thickness=2mm, cu thickness=35 m m, copper areas: 0.5cm 2 , 6cm 2 ). 40 45 50 55 60 65 70 01234567 pcb cu heatsink area (cm^2) rth j-amb (c/w)
15/23 vn920 / VN920-B5 / vn920so thermal fitting model of a single channel hsd in so-16l pulse calculation formula thermal parameter area/island (cm 2 )0.56 r1 (c/w) 0.02 r2 (c/w) 0.1 r3 ( c/w) 2.2 r4 (c/w) 12 r5 (c/w) 15 r6 (c/w) 35 20 c1 (w.s/c) 0.0015 c2 (w.s/c) 7.00e-03 c3 (w.s/c) 1.50e-02 c4 (w.s/c) 0.14 c5 (w.s/c) 1 c6 (w.s/c) 5 8 z th d r th d z thtp 1 d C () + = where d t p t = so-16l thermal impedance junction ambient single pulse 0.01 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000 time (s) zth (c/w) 0.5 cm 2 6 cm 2 t_amb c1 r1 r2 c2 r3 c3 r4 c4 r5 c5 r6 c6 pd tj
16/23 vn920 / VN920-B5 / vn920so thermal fitting model of a single channel hsd in p 2 pak pulse calculation formula thermal parameter area/island (cm 2 )0.976 r1 (c/w) 0.02 r2 (c/w) 0.1 r3 ( c/w) 0.22 r4 (c/w) 4 r5 (c/w) 9 r6 (c/w) 37 22 c1 (w.s/c) 0.0015 c2 (w.s/c) 0.007 c3 (w.s/c) 0.015 c4 (w.s/c) 0.4 c5 (w.s/c) 2 c6 (w.s/c) 3 5 z th d r th d z thtp 1 d C () + = where d t p t = p 2 pak thermal impedance junction ambient single pulse t_amb c1 r1 r2 c2 r3 c3 r4 c4 r5 c5 r6 c6 pd tj 0.01 0.1 1 10 100 1000 0.0001 0.001 0.01 0.1 1 10 100 1000 time (s) zth (c/w) 0.97 cm 2 6 cm 2
17/23 vn920 / VN920-B5 / vn920so dim. mm. inch min. typ max. min. typ. max. a 2.65 0.104 a1 0.1 0.2 0.004 0.008 a2 2.45 0.096 b 0.35 0.49 0.014 0.019 b1 0.23 0.32 0.009 0.012 c 0.5 0.020 c1 45 (typ.) d 10.1 10.5 0.397 0.413 e 10.0 10.65 0.393 0.419 e 1.27 0.050 e3 8.89 0.350 f 7.4 7.6 0.291 0.300 l 0.5 1.27 0.020 0.050 m 0.75 0.029 s8 (max.) so-16l mechanical data
18/23 vn920 / VN920-B5 / vn920so dim. mm. inch min. typ max. min. typ. max. a 4.8 0.189 c 1.37 0.054 d 2.4 2.8 0.094 0.110 d1 1.2 1.35 0.047 0.053 e 0.35 0.55 0.014 0.022 f 0.8 1.05 0.031 0.041 f1 1 1.4 0.039 0.055 g 3.2 3.4 3.6 0.126 0.134 0.142 g1 6.6 6.8 7 0.260 0.268 0.276 h2 10.4 0.409 h3 10.05 10.4 0.396 0.409 l 17.85 0.703 l1 15.75 0.620 l2 21.4 0.843 l3 22.5 0.886 l5 2.6 3 0.102 0.118 l6 15.1 15.8 0.594 0.622 l7 6 6.6 0.236 0.260 m 4.5 0.177 m1 4 0.157 diam. 3.65 3.85 0.144 0.152 pentawatt (vertical) mechanical data
19/23 vn920 / VN920-B5 / vn920so dim. mm. min. typ max. a4.30 4.80 a1 2.40 2.80 a2 0.03 0.23 b0.80 1.05 c0.45 0.60 c2 1.17 1.37 d8.95 9.35 d2 8.00 e 10.00 10.40 e1 8.50 e3.20 3.60 e1 6.60 7.00 l 13.70 14.50 l2 1.25 1.40 l3 0.90 1.70 l5 1.55 2.40 r 0.40 v2 0o 8o package weight 1.40 gr (typ) p010r p 2 pak mechanical data
20/23 vn920 / VN920-B5 / vn920so so-16l tube shipment (no suffix) 1 all dimensions are in mm. base q.ty 50 bulk q.ty 1000 tube length ( 0.5) 532 a 3.5 b 13.8 c ( 0.1) 0.6 tape and reel shipment (suffix 13tr) base q.ty 1000 bulk q.ty 1000 a (max) 330 b (min) 1.5 c ( 0.2) 13 f 20.2 g (+ 2 / -0) 16.4 n (min) 60 t (max) 22.4 tape dimensions according to electronic industries association (eia) standard 481 rev. a, feb 1986 all dimensions are in mm. tape width w 16 tape hole spacing p0 ( 0.1) 4 component spacing p 12 hole diameter d ( 0.1/-0) 1.5 hole diameter d1 (min) 1.5 hole position f ( 0.05) 7.5 compartment depth k (max) 6.5 hole spacing p1 ( 0.1) 2 top cover tape end start no components no components components 500mm min 500mm min empty components pockets saled with cover tape. user direction of feed a c b reel dimensions
21/23 vn920 / VN920-B5 / vn920so pentawatt tube shipment (no suffix) all dimensions are in mm. base q.ty 50 bulk q.ty 1000 tube length ( 0.5) 532 a 18 b 33.1 c ( 0.1) 1 c b a
22/23 vn920 / VN920-B5 / vn920so p 2 pak tube shipment (no suffix ) all dimensions are in mm. base q.ty 50 bulk q.ty 1000 tube length ( 0.5) 532 a 18 b 33.1 c ( 0.1) 1 tape and reel shipment (suffix 13tr) all dimensions are in mm. base q.ty 1000 bulk q.ty 1000 a (max) 330 b (min) 1.5 c ( 0.2) 13 f 20.2 g (+ 2 / -0) 24.4 n (min) 60 t (max) 30.4 tape dimensions according to electronic industries association (eia) standard 481 rev. a, feb 1986 all dimensions are in mm. tape width w 24 tape hole spacing p0 ( 0.1) 4 component spacing p 16 hole diameter d ( 0.1/-0) 1.5 hole diameter d1 (min) 1.5 hole position f ( 0.05) 11.5 compartment depth k (max) 6.5 hole spacing p1 ( 0.1) 2 top cover tape end start no components no components components 500mm min 500mm min empty components pockets saled with cover tape. user direction of feed reel dimensions c b a
23/23 vn920 / VN920-B5 / vn920so information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this p ublication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectron ics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicr oelectronics. the st logo is a trademark of stmicroelectronics ? 2003 stmicroelectronics - printed in italy- all rights reserved. stmicroelectronics group of companies australia - brazil - canada - china - finland - france - germany - hong kong - india - israel - italy - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - u.s.a. http://www.st.com


▲Up To Search▲   

 
Price & Availability of VN920-B5

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X